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Abstract
We have revisited metallic ferromagnetism to examine the effects of band
broadening due to electron–electron interaction on the magnetic phase diagram.
Based on the generalized single band tight-binding Hamiltonian, we have
explored the condition when the magnetization jumps discontinuously, by
comparing results obtained by the local minima search and the total energy
minimization. We have also investigated how the shape of the density of states
(DOS) affects the magnetic phase diagram. We have found that a system with
the DOS shape of a concave-type could have the discontinuous magnetization
jump as the effective Stoner parameter increases.

Hirsch [1–4] has reported a new mechanism for metallic ferromagnetism based on the
generalized single band tight-binding (TB) Hamiltonian. He has studied the effects of the
higher-order interaction terms beyond the Hubbard on-site Coulomb interaction, such as the
inter-site Coulomb interaction, the exchange interaction, and the pair-hopping interaction,
on the magnetic properties. Higher-order terms dress electrons and eventually change the
bandwidth. In this way, he took into account the band broadening effect in addition to the
normal Stoner exchange band-splitting effect, and found that the ferromagnetism is enhanced
by the band broadening effect.

In obtaining the magnetic phase diagram, Hirsch has employed the method of local minima
search and used the simple model density of states (DOS): the square-type DOS and the TB-
DOS of a one-dimensional lattice chain (1D TB-DOS). Barreteau et al [5] also analysed the
condition for metallic ferromagnetism in the framework of the TB approximation and examined
the effects due to the renormalization of the hopping integrals by the inter-site Coulomb
interaction. They found that the effects are strongly dependent on the shape of the DOS as
well as on the relative values of the inter-site Coulomb interaction. They pointed out that,
to obtain the correct magnetization, one should minimize the total energy with respect to the
magnetization, instead of finding just local minima as Hirsch did.

In this study, we have studied systematically the issues addressed by Hirsch and Barreteau
et al in metallic ferromagnetism. We have investigated how the shape of the DOS affects the
magnetic phase diagram and when the total energy minimization and the local minima search
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Figure 1. (a) TB-DOS of one-dimensional lattice chain (1D TB-DOS), (b) TB-DOS of the 2D
square lattice (2D TB-DOS), (c) TB-DOS of the 3D simple-cubic lattice (3D TB-DOS), (d) the
parabolic DOS (N(ε) = 6ε2 + 0.5).

yield different results for the equilibrium magnetization. For this purpose, we have considered
several types of DOS, such as the 1D TB-DOS, TB-DOSs of the 2D square lattice (2D TB-
DOS) and the 3D simple-cubic lattice (3D TB-DOS), and the parabolic DOS, as well as the
square-type DOS, as shown in figure 1. We have found that the total energy minimization is
essential to find the correct magnetic phase diagram and that the magnetic phase diagram is
sensitive to the shape of the DOS profile.

The following is a generalized single band TB Hamiltonian considered by Hirsch [1],

H = −t
∑

〈i j〉σ

(
c†

iσ c jσ + H.c.
)

+ U
∑

i

ni↑ni↓ + V
∑

〈i j〉
ni n j + Jex

∑

〈i j〉σσ ′
c†

iσ c†
jσ ′ciσ ′c jσ

+ Jph

∑

〈i j〉

(
c†

i↑c†
i↓c j↓c j↑ + H.c.

)
. (1)

Here U , V , Jex, and Jph are the Hubbard on-site Coulomb interaction, the inter-site Coulomb
interaction, the exchange interaction, and the pair-hopping, respectively.

From equation (1), one gets the mean-field Hamiltonian,

H =
∑

kσ

ασ ε0
k c†

kσ ckσ +
∑

kσ

ũ Dn−σ c†
kσ ckσ

⇒
∑

kσ

(
ασ ε0

k − σ

2
ũ Dm

)
c†

kσ ckσ , within constant

≡
∑

kσ

εkσ c†
kσ ckσ , (2)

where ε0
k , εkσ , and m are the bare electron energy, the quasi-particle energy, and the

magnetization, respectively. ασ represents the spin-dependent dragging due to the electron–
electron interaction, which is given by

ασ = 1 − 2 j1 Iσ − 2 j2 I−σ , (3)

where Iσ is the bond-charge defined by

Iσ ≡ 〈c†
iσ c jσ 〉 = − 2

D

∫ εFσ

−∞
εN(ε) dε. (4)

Here N(ε) is the DOS, and D ≡ 2zt is the bare electron bandwidth with z being the number
of nearest neighbours. ε0

F and εFσ are the Fermi energies for the bare and the renormalized
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Figure 2. Schematic diagram of the DOS showing the bandwidth change for a magnetic system
with finite j1 and j2: (a) paramagnetic DOS and (b) ferromagnetic DOS.

electron band, respectively. To simplify the notation, we introduced the following parameters:

j1 = 1

2

(
Jex

t
− V

t

)
, j2 = 1

2

(
Jex

t
+ Jph

t

)

ũ = U

D
+ z Jex

D
.

(5)

ũ plays a role of the effective Stoner parameter. As shown in figure 2, the bandwidth will be
changed due to the spin-dependent ασ .

To obtain the equilibrium magnetization m for given interaction parameters at zero
temperature, one should find a global minimum of the total energy with respect to m,

E = 〈H 〉 = − D

2

∑

σ

(
Iσ − j1 I 2

σ − j2 Iσ I−σ

) + ũ D

4
(n2 − m2), (6)

with the constraint of the particle number conservation,

1
2 m =

∫ εFσ

ε0
F

σ N(ε) dε. (7)

Then the equilibrium m can be obtained by minimizing E(m) within the range 0 < m < n.
Let us first find the local extrema which satisfy

∂m E = 0. (8)

Here ∂m represents ∂
∂m . Differentiating equation (6) by m, one gets

∂m E = − D

2

∑

σ

{(1 − 2 j1 Iσ − 2 j2 I−σ )∂m Iσ } − ũ D

2
m. (9)

Differentiation of equation (7) by m gives
1
2 = (∂mεFσ )σ N(εFσ ). (10)

Using equations (4) and (10), one gets an expression for ∂m Iσ :

∂m Iσ = ∂m
2

D

∫ εFσ

−∞
−εN(ε) dε

= − 2

D
(∂mεFσ )εFσ N(εFσ )

= −σεFσ

D
. (11)
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Figure 3. Total energy E as a function of magnetization m for the half-filled 1D TB-DOS (n = 1).
We vary the ( j , ũ) parameters with fixing β = 1 ( j1 = j2 = j).

Then the local extrema are obtained by the following equation:

0 = ∂m E

= 1

2

∑

σ

σ
(
ασ εFσ − σ

2
ũ Dm

)

≡ D(ε+ − ε−). (12)

Note that Hirsch used this condition to obtain the magnetic phase diagram. However, as
mentioned earlier, one should get the global minimum of the total energy to determine the
equilibrium magnetization. That is, finding just the local extrema from equation (12) and
checking the Stoner criterion would not be sufficient. This is because (i) the Stoner criterion is
not a sufficient but a necessary condition for the ferromagnetic instability [6], and (ii) there is
a constraint for the magnetization: 0 < m < n. Therefore one should compare the total energy
at the extremum m with those at m = 0 and m = n.

In figure 3, we plot the total energy E as a function of m for the 1D TB-DOS by varying
the ( j , ũ) parameters. The 1D TB-DOS is given by

N(ε) = 1

π
√

1/4 − ε2
(13)

for each spin, and thus the DOS is fully filled for n = 2. D is taken to be 1 for calculational
simplicity. In figure 3, we have considered the half-filled case (n = 1). We have also introduced
a parameter β such that j2 ≡ j and j1 ≡ β j , that is, β = (Jex − V )/(Jex + Jph). Let us first
consider the case of β = 1. The case of β 	= 1 will be discussed with respect to figure 8. For
j = 0.2, the Stoner criterion is satisfied when ũ ∼ 1.25, implying that the paramagnetic (PM)
state becomes unstable for j = 0.2 and ũ > 1.25. But, as seen in the figure, the ferromagnetic
(FM) state with finite m is already more stable than the PM state even when ũ < 1.25. This
indicates that the Stoner criterion is only a necessary condition for the ferromagnetism. Also
noteworthy is that the condition ∂m E |m=1 < 0 will not give the criterion of a global minimum
but only a local minimum for the fully polarized ferromagnetic (FFM) state (m = n). For
j = 0.34, as ũ increases, the magnetization increases continuously from m = 0 to m ∼ 0.6,
and at ũ ∼ 1.025, it jumps from m ∼ 0.6 to m = 1 discontinuously. For j = 0.6, the
magnetization increases from m = 0 to 1 continuously as ũ increases up to 1. For j = 1.0,
the magnetization increases continuously from m ∼ 0.4 to m = 1. The case of j = 0.34
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0
0
.
4

0
.
8

1
.
2

1
.
6

j

u~

FFM

PM

0
.3

m=1
.9

.8

.7

.6

.5

.4

0 0.5 1.0 1.5

0
0
.
4

0
.
8

1
.
2

1
.
6

j

u~

FFM

PM

0

m=1

0 0.5 1.0 1.5

Figure 5. Magnetic phase diagram for the half-filled 1D TB-DOS in the ( j–ũ) space with β = 1.
FFM represents the fully polarized ferromagnetic phase, and PM represents the paramagnetic phase.
The region between them corresponds to the partially polarized ferromagnetic (PFM) phase with
finite magnetization. The inset shows the phase diagram obtained by Hirsch [3] employing the local
minimum search. The lines in the PFM region correspond to extrema lines for given magnetization
values. Note the difference between the present and Hirsch’s results near the vertex region (circled
area).

demonstrates the necessity of using the total energy minimization to obtain the correct magnetic
phase.

Figure 4 presents the magnetization as a function of ũ for the half-filled 1D TB-DOS with
β = 1. For j = 0.2, as ũ increases, the system transforms from the PM phase to the FFM
phase directly. On the other hand, for j = 0.3 and 0.4, as ũ increases, the magnetization goes
from 0 to finite value smoothly, and at some ũ, it jumps to 1. For j = 0.5, the magnetization
increases from 0 to 1 smoothly. For much larger value of j , say j = 1.0, the magnetization
starts from a finite value and increases smoothly to 1.

In figure 5, we present the resulting magnetic phase diagram for the 1D TB-DOS
with varying j and ũ parameters. The magnetization here is obtained by the total energy
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minimization. For small j and ũ, the PM phase is stable, while for large j and ũ, the FFM
phase is stable. The partially polarized FM phase (PFM) is stable in between. The result is
nearly the same as that of Hirsch [3] (see the inset of figure 5). But there is also a noticeable
difference near ũ ∼ 1 for small j near the vertex region. According to the result by Hirsch, the
FFM phase is always stable for ũ > 1. In contrast, in the correct magnetic phase diagram, there
are regions of stable PFM and PM phases even for ũ > 1. In fact, the PFM region appears only
for ũ < 1/(π/2 − 2/π) ≈ 1.07, at which the boundary line between the PM and FFM phases
for small j and the extremum line for m = 0 intersect.

Let us check more carefully when the local minima search and the total energy
minimization yield different results. If there is more than one extremum between m = 0
and 1, as we have seen for j = 0.34 in figure 3, the local minima search and the total energy
minimization can give different results. To have more than one extremum, extrema lines for
certain magnetization values in the ( j–ũ) space must intersect. From equation (12), one gets
the extremum line for given magnetization,

j = (εF↑ − εF↓) − ũm

2β(I↑εF↑ − I↓εF↓) + 2(I↓εF↑ I↑εF↓)

=
(εF↑ − εF↓)

(
1 − ũ m

(εF↑−εF↓)

)

2β(I↑εF↑ − I↓εF↓) + 2(I↓εF↑ I↑εF↓)

≡ j0(n, m)

(
1 − ũ

(εF↑ − εF↓)/m

)

≡ j0(n, m)

(
1 − ũ

S(n, m)

)
. (14)

Equation (14) indicates that the intersections of the extremum line with j and ũ axes are
j0(n, m) and S(n, m), respectively. Here j0(n, m) corresponds to the j -value that gives the
extremum energy at m for given n and ũ = 0, while S(n, m) ≡ (εF↑ − εF↓)/m corresponds to
the ũ-value that gives the extremum energy at m for given n and j = 0.

In figure 6, we show S(n, 0) and S(n, n) as a function of n for several DOSs. The boundary
between the PM and FM phases is determined by the value of S(n, 0) which corresponds to
∂m(εF↑ − εF↓)|m=0, whereas the boundary between the PFM and FFM phases is determined
by the value of S(n, n). Note that for the 2D (figure 6(b)) and 3D (figure 6(c)) TB-DOSs,
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Figure 7. Magnetic phase diagram for the square-type DOS (a), the 2D (b) and 3D (c) TB-DOSs,
and the parabolic DOS (d) in the ( j–ũ) space. We consider the case with β = 1 and n = 1
(half-filled case). Only for the parabolic DOS does the PM–FFM boundary appear.

S(n, n) is always larger than S(n, 0), while for the 1D TB-DOS (figure 6(a)) and the parabolic
DOS (figure 6(d)), they are reversed for some region of n. The square-type DOS is special,
because S(n, m) is always one for any m. To be precise, one should check whether S(n, m)

is a monotonically increasing function of m or not. Note that, for β > 0, j0(n, m) is a
monotonically increasing function of m. Therefore, provided

S(n, m1) < S(n, m2), (15)

for m1 > m2, there are always intersections between extrema lines of m1 and m2, and so there
is eventually more than one extremum in some region. Thus, one can conclude from the results
of figure 6 that, for the 1D TB-DOS and the parabolic DOS, the local minima search and the
total energy minimization yield different results, while, for the 2D and 3D TB-DOSs and the
square-type DOS, both methods yield the same results1.

One can generalize this argument to the cases with the arbitrary DOS form. That is, if
the DOS shape is of a concave type (high at the band edge and low at the band centre) as for
the 1D TB-DOS, the inequality of equation (15) holds and so the local minima search and the
total energy minimization will produce different results. Then there may be some jumps in the
magnetization, as seen in figure 4.

In figure 7, we have plotted the magnetic phase diagram in the ( j–ũ) space for the half-
filled case and β = 1. It is seen that both j and ũ enhance the ferromagnetism. As expected,
only for the parabolic DOS (figure 7(d)), which is of a concave type, does a direct boundary
between the PM and FFM phases appear. The comparison between figures 5 and 7(d) clearly
shows a modification of the magnetic phase diagram due to the change in the DOS shape. As
ũ increases along the horizontal arrow in figure 7(d), the magnetization jumps first from 0 to a

1 This is valid for β > 0. For β < 0, caution is needed, because j0(n, m) is not always a monotonically increasing
function of m (see [5]).
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finite value and then grows continuously to 1. This behaviour is different from that for the 1D
TB-DOS (figure 5).

In figure 8, we have provided the magnetic phase diagram in the ( j–ũ) space, for the
1D TB-DOS with varying β-value. As β decreases, the PFM region becomes narrower, and
so for β < −1, the PFM region disappears completely. Note that varying β corresponds
to changing the ratio of (Jex − V )/(Jex + Jph), that is, incorporating the inter-site Coulomb
interaction and the pair-hopping interaction effectively in the exchange interaction. The results
of figure 8 reflect that the effects of the inter-site Coulomb and the pair-hopping interaction on
the ferromagnetism would be important for some cases. This behaviour is for the half-filled
case. For different band fillings, the β-dependence is a bit different [7].

In figure 9, we plot the bandwidth parameter ασ as a function of ũ for the 1D TB-DOS,
with varying other parameters (β , j , and n). In the case of figure 9(a), as ũ increases, the ασ for
both spins increase equally. Since ασ is a function of m for given j , n, and β , one can deduce
from figure 9(a) that, as ũ increases, the magnetic phase changes from the PM to the PFM
phase, and then to the FFM phase. The situation in figure 9(b) is similar to that in figure 9(a)
except that the bandwidth parameter is different for each spin. The bandwidth of the minority
spin is narrower than that of the majority spin. We have from equation (3) that

α↑ − α↓ = 2 j (I↑ − I↓)(1 − β). (16)

Iσ (n) has a dome-like shape with maximum at n = 1, and so I↑ > I↓ below half-filling.
Accordingly, α↑ � α↓ for β � 1, as shown in figure 9. For β = 1, ασ for both spins are equal,
as mentioned in figure 9(a). In the case of a half-filled symmetric band, the ασ for both spins
are equal too.

In figure 10, we present the magnetic phase diagram in the (n– j ) space for the 1D TB-
DOS, with varying β . We fixed ũ = 0.2. As β decreases, the PFM region becomes narrower,
while the PM region becomes wider near the half-filling. The FFM phase becomes the most
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stable near the band edge. Note that ασ = 1 − 2 j (I−σ − Iσ ) for β = −1, and so the effect of
the bandwidth change becomes negligible near half-filling where I↑ ≈ I↓.

We have also checked the β-dependence of the magnetic phase diagram for other DOSs,
and found that the β-dependence is similar to that for 1D TB-DOS. From figures 7 and 10, one
can argue that both j and ũ enhance the ferromagnetism, while V enhances the ferromagnetism
near band edges. On the other hand, Jph enhances the ferromagnetism, but the enhanced region
relies on the sign of Jex − V . That is, for positive Jex − V , the ferromagnetism near the band
centre is enhanced, whereas, for negative Jex − V , the ferromagnetism near band edges is
enhanced.
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In conclusion, we have obtained the magnetic phase diagrams for several DOS shapes
by varying the electron–electron interaction parameters. We have demonstrated that the DOS
shape significantly affects the properties near the magnetic phase boundaries. We have verified
that the total energy minimization is essential for obtaining the correct magnetic phase diagram.
We have also found the relationship between the DOS shape and the magnetization behaviour,
which reveals that a system with the DOS shape of a concave type could have a discontinuous
magnetization jump as the effective Stoner parameter ũ increases.
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